Proteinase Activity during Tracheary Element Differentiation in Zinnia Mesophyll Cultures.
نویسندگان
چکیده
The zinnia (Zinnia elegans) mesophyll cell culture tracheary element (TE) system was used to study proteinases active during developmentally programmed cell death. Substrate-impregnated gels and single-cell assays revealed high levels of proteinase activity in differentiating TEs compared with undifferentiated cultured cells and expanding leaves. Three proteinases (145, 28, and 24 kD) were exclusive to differentiating TEs. A fourth proteinase (59 kD), although detected in extracts from all tissues examined, was most active in differentiating TEs. The 28- and 24-kD proteinases were inhibited by thiol proteinase inhibitors, leupeptin, and N-[N-(L-3-trans-carboxirane-2-carbonyl)-L-leucyl]-agmatine (E-64). The 145- and 59-kD proteinases were inhibited by the serine proteinase inhibitor phenylmethylsulfonyl fluoride (PMSF). Extracts from the TE cultures contained sodium dodecyl sulfate-stimulated proteolytic activity not detected in control cultures. Sodium dodecyl sulfate-stimulated proteolysis was inhibited by leupeptin or E-64, but not by PMSF. Other tissues, sucrose-starved cells and cotyledons, that contain high levels of proteolytic activity did not contain TE-specific proteinases, but did contain higher levels of E-64-sensitive activities migrating as 36- to 31-kD enzymes and as a PMSF-sensitive 66-kD proteinase.
منابع مشابه
Proteasome inhibitors prevent tracheary element differentiation in zinnia mesophyll cell cultures
To determine whether proteasome activity is required for tracheary element (TE) differentiation, the proteasome inhibitors clasto-lactacystin beta-lactone and carbobenzoxy-leucinyl-leucinyl-leucinal (LLL) were used in a zinnia (Zinnia elegans) mesophyll cell culture system. The addition of proteasome inhibitors at the time of culture initiation prevented differentiation otherwise detectable at ...
متن کاملChanges in the activity and mRNA of cinnamyl alcohol dehydrogenase during tracheary element differentiation in zinnia.
Changes in the enzymatic activity of cinnamyl alcohol dehydrogenase (CAD) and in the expression of a gene for CAD during tracheary element (TE) differentiation were investigated in cultures of single cells isolated from the mesophyll of zinnia (Zinnia elegans). In cultures in which TE differentiation was induced (TE-inductive cultures), CAD activity increased from h 36 after the start of cultur...
متن کاملA Secreted Factor lnduces Metaxylem-Like Tracheary Cell Expansion and Formation
Conditioned medium from mesophyll cell-suspension cultures of Zinnia eregans 1. has striking effects on cell expansion and tracheary element differentiation when applied to cultures of freshly isolated mesophyll cells. These effects include (a) induction of early cell expansion, (b) delay in differentiation by 48 h or more, (c) reduction in the synchrony of differentiation, and (d) early format...
متن کاملEstablishing in vitro Zinnia elegans cell suspension culture with high tracheary element differentiation.
The Zinnia elegans mesophyll cell culture is a useful system for xylogenesis studies. The system is associated with highly synchronous tracheary element (TE) differentiation, making it more suitable for molecular studies requiring larger amounts of molecular isolates, such as mRNA and proteins and for studying cellulose synthesis. There is, however, the problem of non-uniformity and significant...
متن کاملCell Expansion and Tracheary Element Differentiation Are Regulated by Extracellular pH in Mesophyll Cultures of Zinnia elegans L.
The effects of medium pH on cell expansion and tracheary element (TE) differentiation were investigated in differentiating mesophyll suspension cultures of Zinnia elegans L. In unbuffered cultures initially adjusted to pH 5.5, the medium pH fluctuated reproducibly, decreasing about 1 unit prior to the onset of TE differentiation and then increasing when the initiation of new Tes was complete. E...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 113 3 شماره
صفحات -
تاریخ انتشار 1997